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Replica exchange simulations have become the method of choice in computational protein science, but they
still often do not allow an efficient sampling of low-energy protein configurations. Here, we reconstruct replica
flow in the temperature ladder from first passage times and use it for temperature optimization, thereby
maximizing sampling. The method is applied in simulations of folding thermodynamics for a number of
proteins starting from the pentapeptide Met-enkephalin, through the 36-residue HP-36, up to the 67-residue
protein GS-�3W.
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Progress in computational protein studies is still ham-
pered by inefficient sampling at low temperatures. The rea-
son is the inherent roughness of protein energy landscapes
leading to barriers and bottlenecks. The resulting slow relax-
ation can be alleviated by the replica exchange method
�1–3�. Monte Carlo or molecular dynamics simulations �4–8�
are performed in parallel at different values of a control pa-
rameter, most often the temperature. At certain times the cur-
rent conformations of replicas at neighboring control param-
eter values are exchanged according to a generalized
Metropolis rule �9�, and each replica performs a random
walk in control parameter space. As convergence is faster
than by spending all computer time at one low temperature,
replica exchange has become the method of choice for pro-
tein simulations.

Even with replica exchange sampling, however, the com-
putational costs of protein simulations can still be prohibi-
tive. This is, in part, because the efficiency of this technique
depends strongly on the discretization of control parameter
space. Trebst and co-workers �10–12� have shown how sam-
pling can be optimized by maximizing the flow across pa-
rameter space. While their work led to a much deeper under-
standing of the dynamics of the replica exchange technique,
its application in protein simulations is still limited: Their
schemes rely on a direct analysis of global replica flow, but
an accurate measurement of this nonlocal quantity requires
computational efforts that are excessively high in most pro-
tein simulations. We propose to overcome this difficulty by
an alternative approach that relies on measurements of first
passage times within the temperature ladder. The resulting
increased efficiency in optimizing the temperature discretiza-
tion enables thermal all-atom simulations of larger proteins
than previously possible. As an example, we present first
results from an ongoing folding study of the 67-residue
GS-�3W.

In this study, we assume replica exchange simulations re-
lying on N+1 control parameter values, numbered n
=0, . . . ,N, which we will call nodes. The time evolution of

the probability P�n , t� that an individual replica is on node n
at time t can be approximated by a master equation in dis-
crete time �13,14�,

P�n,t + 1� = W��n−1,�n��P�n − 1,t� − P�n,t�� + W��n,�n+1�

��P�n + 1,t� − P�n,t�� + P�n,t� . �1�

Here, �n is the control parameter value used for simulation at
node n. The symmetric transition probabilities between
neighboring nodes, W�� ,���=W��� ,�� lead to a constant
stationary distribution: P0�n�=1 / �N+1�. The flow of replicas
across temperature space can be determined from Eq. �1�: the
probability distribution for the flow from n=0 to n=N is the
stationary solution of Eq. �1� with the boundary conditions
Pup�0�=1 and Pup�N�=0, resulting in

Pup�n� = �1 − J�
i=0

n−1
1

W��i,�i+1�� , �2�

and a similar form for Pdown. In an actual simulation Pup and
Pdown are estimated by measuring the fraction of replicas
moving up,

fup�n� =
zup�n�

zup�n� + zdown�n�
, �3�

and a corresponding quantity for those moving down,
fdown�n�=1− fup�n�. Here, zup�n� �zdown�n�� is the number of
visits at node n by replicas that came from node 0 �N�. In the
following we will measure flow using fup and denote it by
fmea.

In order to optimize sampling one has to maximize the
total current J, which is given by

J = ��
i=0

N−1
1

W��i,�i+1��−1

�4�

and also serves as normalization constant in Eq. �2�. The
control parameter �i.e., temperature� set ��0

�opt� , . . . ,�N
�opt�	

that maximizes J leads to linear flow distributions �13�,

Pup
�opt��n� = 1 − n/N and Pdown

�opt� �n� = n/N . �5�

The corresponding optimized transition probabilities are con-
stant, W�opt���i ,�i+1�=const.
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We emphasize that usually a temperature set with equal
acceptance rates will not lead to an optimized flow. Take as
an example Fig. 1. Here we show the flow for an implicit-
solvent replica-exchange Monte Carlo simulation of the pen-
tapeptide Met-Enkephalin, using 12 replicas with 106 sweeps
over all degrees of freedom. An exchange attempt is made
every ten sweeps. The temperature set �drawn in the inset�
was chosen to yield approximately equal transition rates. The
hypothetical flow that would be observed if the transition
probabilities in Eq. �1� were given by the observed accep-
tance rates is denoted by Pacc, and is close to the ideal linear
form, Eq. �5�. However, even for this simple molecule we
observe a strong deviation of the measured flow, denoted by
fmea, from Pacc as well as from the ideal linear form, indicat-
ing that the temperatures are far from optimal. This deviation
is due to the difference between the observed acceptance
rates and the effective transition probabilities entering the
master equation �1�. Due to broken ergodicity the random
walk of replicas can have a hierarchical, treelike structure,
and observed acceptance rates as well as flow distributions
are projections onto a one-dimensional walk �13�. Equiva-
lence between both would require fast relaxation at all nodes
�13,15�, which is never the case in protein simulations. In-
stead, the effective transition probabilities describing long-
time properties like replica flow are usually different from
observed acceptance rates, which describe only short-time
properties. Such discrepancies between short-time and long-
time properties of stochastic processes are well known
�16,17�.

A direct measurement of the flow distribution is compu-
tationally costly: Individual replicas have to cross the full
ladder of nodes many times in order to ensure sufficient sta-
tistics; see Eq. �3�. The scarcity of such “tunneling” events is
a problem particularly at the beginning of the control param-
eter optimization when round trip times are largest. In order
to alleviate this problem we propose to estimate the flow
distribution from measurements of mean first passage times
�14,18� within the temperature ladder. First passage times

effectively describe the long-time properties of stochastic
processes �16,17� and they incorporate correlations that are
not covered by short time properties like observed accep-
tance probabilities. This approach does not require tunneling
of replicas over the whole control parameter range, as global
flow can be approximated from observing mean first passage
times of replicas crossing only part of it.

A first passage time between nodes n and n� is the time
between a particular replica’s first encounter with node n and
its consecutive first encounter with node n�. The mean first
passage time is the average over all such events. For the
master equation �1� it is given by �13�

��n → n�� = �
i=n

n�−1
1

P0�i�W��i,�i+1��j=0

i

P0�j� , �6�

with n��n, and an equivalent form for n��n. We will con-
centrate on mean first passage times between the lower
boundary node 0 and inner nodes n:

��0 → n� = ��0 → n − 1� +
n

W��n−1,�n�
, �7�

as well as on those between the upper boundary node N and
the inner nodes n:

��N → n� = ��N → n + 1� +
N − n

W��n+1,�n�
. �8�

with ��0→0�
0
��N→N�. These two relations can be
employed to determine the effective transition probabilities
entering Eq. �1�.

For ��0→n�, the number of first passage events in a simu-
lation decreases with n, while the error increases. Similarly,
the error for ��N→n� increases with decreasing n. There
exists a node n* so that the error of ��0→n� is still smaller
than that of ��N→n�, while this relation changes for node
n*+1. Therefore the mean first passage times for ��0→n�,
n=1, . . . ,n*, and those for ��N→n�, n=n*+1, . . . ,N−1, will
be the most reliable ones. Hence while in the optimization
schemes of Refs. �12,13� the limiting factors are tunneling
events across the full ladder of temperatures, here the statis-
tics is only limited by the number of first passage events
from either boundary to n*. Such events occur even in the
absence of tunneling events, and their number can be orders
of magnitude larger.

In order to simplify our formalism, we introduce sums
over adjacent inverse transition probabilities:

h�0 → n� = �
j=1

n
1

W�� j−1,� j�
= �

j=1

n−1
��0 → j�
j�j + 1�

+
��0 → n�

n
,

�9�
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FIG. 1. Flow distribution for a replica-exchange Monte Carlo
simulation of Met-Enkephalin: �fmea� from direct observations, Eq.
�3�, �Pacc� reconstructed using Eq. �2� with effective transition prob-
abilities approximated by observed acceptance rates, and �Pfpt� us-
ing measured first passage times, Eq. �11�. The underlying tempera-
ture set is given in the inset. The linear curve indicates the ideal
distribution, Eq. �5�.
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h�N → n� = �
j=n+1

N
1

W�� j,� j−1�

= �
j=1

N−n−1
��N → N − j�

j�j + 1�
+

��N → n�
N − n

. �10�

Using these auxiliary functions, we obtain the following ex-
pressions for the flow probabilities:

Pup
�MFPT��n� = �1 −

h�0 → n�
h�0 → n*� + h�N → n*�

: n � n*

h�N → n�
h�0 → n*� + h�N → n*�

: n � n*�
�11�

with a similar relation for Pdown
�MFPT�. We will abbreviate

Pup
�MFPT� by Pfpt in the following. Fig. 1 displays also this

quantity for the above described Met-enkephalin simulation,
with the temperatures chosen for equal acceptance rates. Pfpt
follows closely the measured flow distribution fmea of Eq.
�3�. Differences between the curves are due to sampling
variations.

Starting from a flow distribution Pfpt reconstructed from
mean first passage time analysis, one can now use existing
iteration schemes that exhibits fast convergence to the opti-
mal temperature values �11–13�. We found that flow distri-
butions Pfpt derived from mean first passage times lead to
temperature sets that are more stable upon iteration than
those from flows measured directly by way of Eq. �3�. For
the example of Met-Enkephalin, we show in Fig. 2 the mea-
sured flow distribution fmea for a temperature discretization
that results from a single iteration based on Pfpt of Fig. 1.
The deviations from the ideal case �the linear line� are al-
ready minimal.

Progress in computational protein science has gone far
beyond tiny peptides such as Met-enkephalin. We chose that
molecule solely to demonstrate that already for such simple
systems equal acceptance rates do not lead to an optimal

flow. To test our approach for a more realistic example, we
have selected the 36-residue protein HP-36 in the same im-
plicit solvent as in Ref. �12�, where this protein was used to
introduce flow analysis to replica exchange simulations of
biomolecules. HP-36 has a sufficiently complicated structure
to serve as a generic instance of a globular protein but is
small enough to be numerically accessible. For this reason it
has become an often used toy model to study simulation
techniques.

The series of two iterations with a total statistics of
2�105 sweeps, and replica-swap attempts every ten sweeps,
is displayed in Fig. 3. For comparison, we show also the
optimal temperature set of Ref. �12� that relied on a total of
7�105 sweeps; note the differences. The estimated flow for
a replica walking from node 0 to node N, and back, and
therefore the sampling efficiency, is already larger than for
the temperature set of Ref. �12�. This is not surprising as the
latter was determined from direct measurements of the flow
distribution fmea, a nonlocal quantity that is difficult to deter-
mine in a simulation.

The improved sampling of the 36-residue HP-36 has
given us confidence in our technique. For this reason, we
decided to apply it to GS-�3W �PDB-code 1LQ7 �19,20��, a
three-helix bundle with a single tryptophan buried in the in-
terior of the protein. It was designed to study the creation

FIG. 4. �Color online� Overlap of the lowest energy configura-
tion �gray� of the 67-residue GS-�3W with the experimentally de-
termined structure �PDB–code:1LQ7�. The root-mean square devia-
tion over heavy atoms between both configurations is 3.3 Å.
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FIG. 2. Flow distribution for an implicit-solvent replica ex-
change Monte Carlo simulation of Met-Enkephalin. The mean-first-
passage-times optimized temperatures are given in the inset and
were obtained after one iteration. As in Fig. 1, the linear curve
indicates the ideal distribution, Eq. �5�.
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FIG. 3. �Color online� Optimizing the temperature set of a 20-
replica implicit-solvent simulation of HP36. TTH is the final tem-
perature discretization of Ref. �12�.
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and maintenance of a tryptophanyl radical, and therefore
serves as a simple model for the function of redox proteins
�20�. With 67 residues the protein is of a size that far ex-
ceeded what we could study previously in physics-based,
thermal all-atom simulations, and previous computational in-
vestigations of the protein relied on coarse-grained models
only �21�. In Fig. 4 we show the lowest energy structure
found so far in an ongoing implicit-solvent replica exchange
Monte Carlo simulation relying on mean first-passage-times-
optimized temperatures �22�. We used 32 replicas, all starting
from a stretched initial configuration, and followed, so far,
over 500 000 sweeps. The figure shows the overlap of the
minimal structure with 1LQ7. The root mean square devia-
tion is 3.3 Å and the tm score �23� equals 0.5674. A detailed
analysis of our data will be published later, but our results do
already indicate that replica exchange with flow-optimized
temperatures allows thermal folding simulations of such
large proteins. To our best knowledge, this is the first time
that a protein of this size and complexity has been success-

fully and reproducibly folded from first principles in unbi-
ased thermal all-atom simulations.

In summary, we have presented a technique employing
observed mean first passage times within the control param-
eter ladder to speed up the flow across the control parameter
space, leading to faster sampling of low-energy protein con-
figurations. We have demonstrated the working of this
method for two toy models, the pentapeptide Met-
Enkephalin and the 36-residue HP-36. Results from prelimi-
nary folding simulations of the 67-residue GS-�3W, a pro-
tein of a size previously not accessible to thermal all-atom
folding simulations, demonstrate the full power of our ap-
proach. We mention in passing that this method can be ap-
plied straightforwardly to generalized-ensemble simulations
�4�, where a weight function has to be determined that opti-
mizes the flow across order parameter space.
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